МОУ «Половинская вечерняя (сменная)

общеобразовательная школа»

Программа принята на заседании педагогического совета школы, от «31 августа 2017г.»

Рабочая программа по курсу «Химия»

Класс 10-12

К УЧЕБНИКАМ «Химия» 10 класс Авторы: О.С. Габриелян

«Химия» 11 класс Авторы: О.С. Габриелян

Составитель: Гричанюк Н.М.

Пояснительная записка

Настоящая рабочая программа базового учебного курса «Химия» для 10-12 классов МОУ «Половинская вечерняя (сменная) общеобразовательная школа» составлена на основе следующих нормативных документов:

- Учебного плана МОУ «Половинская вечерняя (сменная) общеобразовательная школа» на 2016-2017 учебный год.
- Федерального компонента государственного образовательного стандарта среднего общего образования (приказ МОиН РФ от 05.03.2004г. №1089).
- Авторской программы О.С. Габриелян (О.С.Габриелян Программа курса химии для 8-11 классов общеобразовательных учреждений / О.С. Габриелян, М.: Дрофа, 2011). В соответствии с учебным планом МОУ «Половинская вечерняя (сменная)

общеобразовательная школа» программа рассчитана на преподавание курса химии

- в 10 классе в объеме 1 часа в неделю (36 часов в год);
- в 11 классе в объеме 1 часа в неделю (36 часов в год);
- в 12 классе в объеме 1 часа в неделю (36 часов в год).

Учебно-методические источники:

- Химия. 10 класс: учеб. для общеобразоват. учреждений / О.С. Габриелян. М.: Дрофа, 2011
- Химия. 11 класс: учеб. для общеобразоват. учреждений / О.С. Габриелян. М.: Дрофа, 2011

Данная рабочая программа:

- позволяет сохранить достаточно целостный и системный курс химии;
- представляет курс, освобожденный от излишне теоретизированного и сложного материала, для отработки которого требуется немало времени;
- включает материал, связанный с повседневной жизнью человека, также с будущей профессиональной деятельностью выпускника средней школы, которая не имеет ярко выраженной связи с химией;
- полностью соответствует стандарту химического образования средней школы базового уровня.

Межпредметная естественнонаучная интеграция позволяет на химической базе объединить знания физики, биологии, географии, экологии в единое понимание естественного мира, т.е. сформировать целостную естественнонаучную картину мира. Это позволит старшеклассникам осознать то, что без знания основ химии восприятие окружающего мира будет неполным и ущербным, а люди, не получившие таких знаний, могут неосознанно стать опасными для этого мира, так как химически неграмотное обращение с веществами, материалами и процессами грозит немалыми бедами.

Идет и интеграция химических знаний с гуманитарными дисциплинами: историей, литературой, мировой художественной культурой. А это, в свою очередь, позволяет средствами учебного предмета показать роль химии в нехимической сфере человеческой деятельности, т.е. полностью соответствует гуманизации и гуманитаризации обучения.

Изучение химии на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

- освоение знаний о химической составляющей естественнонаучной картины мира, важнейших химических понятиях, законах и теориях;
- овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;
- развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;

- воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Содержание

Методы познания в химии

Научные методы познания веществ и химический явлений. Роль эксперимента и теории в химии. Моделирование химических процессов.

Теоретические основы химии

Современные представления о строении атома

Атом. Изотопы. Атомные орбитали. s-, p-элементы. Особенности строения электронных оболочек атомов переходных элементов. Периодический закон и периодическая система химических элементов Д.И. Менделеева.

Химическая связь

Ковалентная связь, ее разновидности и механизмы образования. Электроотрицательность. Степень окисления и валентность химических элементов. Ионная связь. Катионы и анионы. Металлическая связь. Водородная связь.

Вещество

Качественный и количественный состав вещества. Вещества молекулярного и немолекулярного строения.

Причины многообразия веществ: изомерия, гомология, аллотропия.

Явления, происходящие при растворении веществ - разрушение кристаллической решетки, диффузия, диссоциация, гидратация.

Чистые вещества и смеси. Истинные растворы. Растворение как физико-химический процесс. Способы выражения концентрации растворов: массовая доля растворенного вещества. Диссоциация электролитов в водных растворах. Сильные и слабые электролиты.

Золи, гели, понятие о коллоидах.

Химические реакции

Классификация химических реакций в неорганической и органической химии. Реакции ионного обмена в водных растворах. Среда водных растворов: кислая, нейтральная, щелочная. Водородный показатель (рН) раствора. Окислительно-восстановительные реакции. Электролиз растворов и расплавов. Скорость реакции, ее зависимость от различных факторов. Катализ. Обратимость реакций. Химическое равновесие и способы его смешения.

Неорганическая химия

Классификация неорганических соединений. Химические свойства основных классов неорганических соединений.

Металлы. Электрохимический ряд напряжений металлов. Общие способы получения металлов. Понятие о коррозии металлов. Способы защиты от коррозии.

Неметаллы. Окислительно-восстановительные свойства типичных неметаллов. Общая характеристика подгруппы галогенов.

Органическая химия

Классификация и номенклатура органических соединений. Химические свойства основных классов органических соединений.

Теория строения органических соединений. Углеродный скелет. Радикалы.

Функциональные группы. Гомологический ряд, гомологи. Структурная изомерия. Типы химических связей в молекулах органических соединений.

Углеводороды: алканы, алкены и диены, алкины, арены. Природные источники углеводородов: нефть и природный газ.

Кислородсодержащие соединения: одно- и многоатомные спирты, фенол, альдегиды, одноосновные карбоновые кислоты, сложные эфиры, жиры, углеводы.

Азотсодержащие соединения: амины, аминокислоты, белки. Полимеры: пластмассы, каучуки, волокна.

Экспериментальные основы химии

Правила безопасности при работе с едкими, горючими и токсичными веществами.

Проведение химических реакций в растворах.

Проведение химических реакций при нагревании.

Качественный и количественный анализ веществ. Определение характера среды. Индикаторы. Качественные реакции на неорганические вещества и ионы, отдельные классы органических соединений.

Химия и жизнь

Химия и здоровье. Лекарства, ферменты, витамины, гормоны, минеральные воды.

Проблемы, связанные с применением лекарственных препаратов.

Химия и пища. Калорийность жиров, белков и углеводов.

Химия в повседневной жизни. Моющие и чистящие средства. Правила безопасной работы со средствами бытовой химии.

Химические вещества как строительные и поделочные материалы. Вещества, используемые в полиграфии, живописи, скульптуре, архитектуре.

Общие представления о промышленных способах получения химических веществ (на примере производства серной кислоты).

Химическое загрязнение окружающей среды и его последствия.

Бытовая химическая грамотность.

Требования к уровню подготовки выпускников

В результате изучения химии на базовом уровне ученик должен знать/понимать:

- важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;
- основные теории химии: химической связи, электролитической диссоциации, строения органических соединений;

- важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы; уметь:

- называть изученные вещества по "тривиальной" или международной номенклатуре;

- определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;
- характеризовать: элементы малых периодов по их положению в периодической системе Д.И. Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;
- объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов:
- выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;
- проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- объяснения химических явлений, происходящих в природе, быту и на производстве;
- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- приготовления растворов заданной концентрации в быту и на производстве;
- критической оценки достоверности химической информации, поступающей из разных источников;
- понимания взаимосвязи учебного предмета с особенностями профессий и профессиональной деятельности, в основе которых лежат знания по данному учебному предмету.

Учебно- тематический план по химии 10-12 классов 2016-2017 учебный год

№ п/п	Наименование темы	Кол-во часов	Практ. работы	Контр. работы	Зачеты
11/11	10 к	ласс	расоты	раооты	
1	Теория строения органических				
	соединений				
2	Углеводороды и их природные			1	1
	источники				
3	Кислородосодержащие соединения и				1
	их нахождение в живой природе.				
4	Азотсодержащие соединения и их		1	1	
	нахождение в живой природе.				
5	Биологически активные органические				
	соединения.				
6	Искусственные и синтетические		1		1
	органические соединения.				
	Итого	36	2	3	3
	11 к	ласс	1		<u> </u>
1	Строение атома	6			1
2	Строение вещества	26	1	1	2
3	Повторение	4			
	Итого	36	1	1	3
	12 к	ласс			
1	Химические реакции	16	2	1	1
2	Вещества и их свойства	20	4	1	2
	Итого	36	6	2	3

КАЛЕНДАРНО -ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ПО ХИМИИ

10 класс 1 часа в неделю. 36 часа в год.

Программа: Автор Габриелян О.С. Программа курса химии для 10-11 классов общеобразовательных учреждений. Базовый уровень., Москва, Дрофа, 2011 год.

Учебник О.С. Габриелян. Химия. 10 класс, Москва, Дрофа, 2011 год

№ п/п	№ в теме	Дата проведения	Тема урока	Домашнее задание
11/11		проведения		
			Зачетный раздел №1. Введение -1 час.	
1	1		Предмет органической химии. Сравнение органических соединений с неорганическими. Природные, искусственные и синтетические органические соединения.	
			Тема 1. Теория строения органических соединений. (3 часов)	
2	1		Валентность. Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений.	
3	2		Понятие о гомологии и гомологах. Понятие об изомерии и изомерах.	§2, crp. 17-21
4	3	J I	Химические формулы в органической химии: молекулярные, электронные, структурные. Модели молекул в органической химии.	§2

		Тема 2. Углеводороды и их природные источники (7	
		часов).	
5	1	Алканы: гомологический ряд, изомерия и номенклатура	<i>§3</i> , стр. 23-31
	1	алканов. Химические свойства алканов (на примере метана и	
		этана): горение, замещение, разложение, дегидрирование.	
		Применение алканов на основе их свойств.	
6	2	Алкены. Этилен, его получение (дегидрированием этана и	<i>§4</i> , стр. 33-41
		дегидратацией этанола). Химические свойства этилена:	
		горение, качественные реакции (обесцвечивание бромной воды	
		и раствора перманганата калия), гидратация.	
7	3	Алкадиены и каучуки. Понятие об алкадиенах как	§5, стр. 42-45
		углеводородах с двумя двойными связями. Химические	
		свойства бутадиена - 1, 3 и изопрена: обесцвечивание бромной	
		воды и полимеризация в каучуки. Резина.	
8	4	Алкины. Ацетилен, его получение пиролизом метана и	<i>§6</i> , стр. 47 -50
		карбидным способом. Химические свойства ацетилена:	
		горение, обесцвечивание бромной воды, присоединение	
		хлороводорода и гидратация. Применение ацетилена на основе	
		свойств. Реакция полимеризации винилхлорида.	
		Поливинилхлорид и его применение.	

9	5	Нефть. Состав и переработка нефти. Нефтепродукты. Бензин §8, стр. 55-61 и понятие об октановом числе.
10	6	Бензол. Получение бензола из гексана и ацетилена. §1, стр. 52-54 Химические свойства бензола: горение, галогенирование, нитрование. Применение бензола на основе свойств.
11	7	Контрольная работа № 1 по зачетному разделу № 1.
		Зачет
		Зачетный раздел №2.
		Тема 3. Кислородсодержащие соединения и их нахождение в живой природе (9 часов).
12	1	Углеводы. Единство химической организации живых организмов. Химический состав живых организмов. Значение углеводов в живой природе и в жизни человека. Углеводы, их классификация: моносахариды (глюкоза), дисахариды (сахароза), полисахариды (крахмал и целлюлоза). Понятие о реакциях поликонденсации и гидролизе на примере: глюкоза <-» полисахарид.

13	2	Глюкоза - вещество с двойственной функцией альдегидоспирта. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, брожение (молочно-кислое, спиртовое). Применение глюкозы на основе свойств.	\$14, стр. 104-107	4
14	3	Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Представление о водородной связи. Химические свойства этанола: горение, взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид.	\$9, стр. 63-73	
15	4	Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение. Понятие о предельных многоатомных спиртах. Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина на основе свойств.	\$9, стр. 71-73	
16	5	Каменный уголь. Фенол. Коксохимическое производство и его продукция. Получение фенола коксованием каменного угля. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Пеликонденсация фенола с формальдегидом в фенол формальдегидную смолу. Применение фенола на основе его свойств.	\$10, стр. 74-79	
17	6	Альдегиды. Получение альдегидов окислением соответствующих спиртов. Применение формальдегида	\$11, стр. 80-83	

	. и ацетальдегида на основе свойств. Химические свойства альдегидов: окисление в соответствующую кислоту и восстановление в соответствующий спирт.	
18 7	Карбоновые кислоты. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с неорганическими кислотами и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные кислоты на примере пальмитиновой и стеариновой.	£12, стр. 84-90
19 8	Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применения сложных эфиров на основе свойств. Жиры как сложные эфиры. Химические свойства жиров: гидролиз (омыление) и гидрирование жидких жиров. Применение жиров на основе свойств.	£13, стр. 92-99
20 9	Обобщение и систематизация знаний по теме № 3. Решение расчетных задач на смеси, вывод молекулярной формулы.	£9-13
	Зачет	
	Тема 4.Азотсодержащие соединения и их нахождение в живой природе (6 часов)	
21 1	Амины. Понятие об аминах. Получение ароматического амина - анилина - из нитробензола. Анилин как органическое основание.	£16, стр. 116-120

		Взаимное влияние атомов в молекуле анилина: ослабление	
		основных свойств и взаимодействие с бромной водой.	
		Применение анилина на основе свойств.	
22	2	Аминокислоты. Получение аминокислот из карбоновых кислот и гидролизом белков.	£17, стр. 122-128
		Химические свойства аминокислот как амфотерных органических соединений: взаимодействие со щелочами,	
		кислотами, друг с другом (реакция поликонденсации).	
		Пептидная связь и полипептиды. Применение аминокислот на	
	 	основе свойств.	
23	3	Белки. Получение белков реакцией поликонденсации аминокислот. Первичная, вторичная, третичная структуры	£17,стр. 128-133
		белков. Химические свойства белков: горение, денатурация,	
		гидролиз, цветные реакции. Биологическая функция белков.	
		Генетическая связь органических соединений.	
24	4	Практическая работа № 1	стр. 180
		Решение экспериментальных задач на определение органических соединений.	
25	5	Нуклеиновые кислоты. Синтез нуклеиновых кислот в клетке	£18
		из нуклеотидов. Общий план строения нуклеотидов функции	
		РНК и ДНК. Роль их в наследстве. Генная инженерия.	
26	6	Контрольная работа № 2 по теме 3, 4.	
20	U	Ronipolishan paoota 3½ 2 no teme 3, 4.	
		Тема 5. Биологически активные органические	
		соединения (4 часа)	

27	1	Ферменты. Ферменты как биологические катализаторь белковой природы. Особенности функционированиз ферментов. Роль ферментов в жизнедеятельности живых организмов и народном хозяйстве.	Я	
28	2	Витамины. Понятие о витаминах. Нарушения, связанные о витаминах. Нарушения, связанные о витаминами: авитаминозы, гипо - и гипервитаминозы. Витамин С как представитель водорастворимых витаминов витамин А как представитель жирорастворимых витаминов.		
29	3	Гормоны. Понятие о гормонах как гуморальных регуляторах жизнедеятельности живых организмов. Инсулин и адреналин как представители гормонов Профилактика сахарного диабета.		
30	4	Лекарства. Лекарственная химия: от натрохимии до химиотерапии. Аспирин. Антибиотики и дисбактериоз. Наркотические вещества. Наркомания, борьба с ней и профилактика.		
		Тема 6. Искусственные и синтетические органические соединения (4 часа)	e	
31	1	Искусственные полимеры. Получение искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение.	1	
32	2	Синтетические полимеры. Получение синтетических	£22	

		полимеров реакциями полимеризации и поликонденсации. Структура полимеров: линейная, разветвленная и пространственная.	
33	3	Представители синтетических пластмасс: полиэтилен- низкого и высокого давления, полипропилен и поливинилхлорид. Синтетические волокна: лавсан, нитрон и капрон.	
34	4	Практическая работа № 2 Распознавание пластмасс и стр. 181 волокон.	
		Зачет.	
		Повторительно-обобщающие уроки (2 часа)	
35	1	Повторительно-обобщающий урок по теме	
36	2	Повторительно-обобщающий урок по теме	

Календарно-тематическое планирование по химии

11 класс по 3-х годичной программе

1 час в неделю 36 часов в год

2016-2017 учебный год

Программа: Автор Габриелян О.С., Программа курса химии для 10-11 классов общеобразовательных учреждений.

Базовый уровень. Москва, Дрофа, 2011 год

Учебник: О.С.Габриелян. Химия. 11 класс, Москва, Дрофа, 2011 год

No	№	Дата		Тема урока	Практическая	Оборудование	Домашнее
п/п	В	прове	дения	×	часть		задание
	теме						
Тем	а 1. Ст	роение	атома	и периодический закон Д.И.Менделеева. (6 часо	B)		
1	1			Основные сведения о строении атома. Ядро:	Вводный	Периодическая	§ 1, стр.35-
				протоны и нейтроны. Изотопы. Электроны.	инструктаж	таблица	36
			·	Электронная оболочка. Энергетический			
				уровень.			
2	2			Особенности строения электронных оболочек		Периодическая	§ 2
				атомов элементов 4 и5 периодов		таблица	
			·	периодической системы Д.И.Менделеева			
				(переходных элементов).			
3	3			Понятие об орбиталях. S- и P-орбитали.		Периодическая	§ 3
				Электронные конфигурации атомов		таблица	}
				химических элементов.			
4	4			Периодический закон Д.И.Менделеева в свете	д. Различные		§ 5, crp.
				учения о строении атома. Открытие	формы		26-36

		Д.И. Менделеевым периодического закона.	периодической		
		Периодическая система химических			
		элементов – графическое отображение			
		периодического закона.			
5	5	Физический смысл порядкового номера		Периодическа	§ 5, c⊤p.
		элемента, номера периода и номера группы.	1	я таблица	36-40
		Валентные электроны. Причины изменения	į.		
		свойств элементов в периодах и группах			
		(главных подгрупп).			
6	6	Положение водорода в периодической			§ 5, стр.
		системе. Значение периодического закона и			40-42
		периодической системы химических			
,		элементов Д.И. Менделеева для развития			
		науки и понимания химической картины			
		мира.			
		Зачет№1			
		Тема 2.Строение вещества (26 часов)			
7	1	Ионная химическая связь. Катионы и	д. Модель	Образцы	§ 6, стр.
		анионы. Классификация ионов. Ионные	кристаллической	минералов	44-46
		кристаллические решетки. Свойства	решетки NaCl	кальцита, галита	
		веществ с этим типом кристаллических			
		решеток.			
8	2	Ковалентная химическая связь.	д. Модели		§ 6, стр.
		Электроотрицательность. Полярная и	кристаллических		46-51
		неполярная ковалентные связи. Диполь.	решеток иода,		
		Полярность связи и полярность молекул.	алмаза, графита		
9	3	Обменный и донорно-акцепторный		Периодическа	стр. 51

10		механизмы образования ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с этими типами кристаллических решеток.		я таблица	7.1
10	4	Металлическая химическая связь. Особенности строения атомов металлов. Металлическая химическая связь и металлические кристаллические решетки. Свойства веществ с этим типом связи.	д. Модели кристаллических решеток некоторых металлов	Периодическа я таблица	стр. 51- 52
11	5	Водородная химическая связь. Межмолекулярная и внутримолекулярная водородная связь. Значение водородной связи для организации и структуры биополимеров.	Модель молекулы ДНК	л. р. Определение типа кристаллических решеток вещества	стр. 52- 53, 95-98
12	6	Полимеры. Пластмассы: термопласты и реактопласты, их представители и применение.	л. р. Ознакомление с коллекцией полимеров: пластмасс и изделий	д. Образцы пластмасс и изделий из них	§ 10, стр. 93-94
13	7	Волокна: природные (растительные и животные) и химические (искусственные и синтетические), их представители и применение.	л.р. Ознакомление с коллекцией волокон и их изделий	д. Образцы волокон и изделий из них	§ 7, стр. 94-95
14	8	Газообразное состояние вещества. Три агрегатных состояния воды. Особенности	д. Три агрегатных		§ 8, стр. 53-54

		строения газов.	состояния воды		-
			(пар, жидкость,		
			лед)		
15	9	Молярный объем газообразных веществ.			§ 8
		Решение расчетных задач на молярный			
		объем и закон Авогадро.			
16	10	Примеры газообразных природных			записи,
		смесей: воздух, природный газ, загрязнение			§ 8
		атмосферы (кислотные дожди, парниковый			
		эффект) и борьба с ним.			
17	11	Представители газообразных веществ:		Приборы для	записи,
		водород, кислород, углекислый газ, аммиак,		собирания газов	§ 8
		этилен. Их получение, собирание,			
		распознавание.			
18	12	Практическая работа № 1. Получение,			
:		собирание и распознавание газов.			
19	13	Анализ работы.			
		Зачет№2			
20	14	Жидкое состояние вещества. Вода.	л. р. Испытание	д. Жесткость	записи,
		Потребление воды в быту и на	воды на жесткость.	воды и способы	§ 9
		производстве. Жесткость воды и способы ее	Устранение	ее устранения	
		устранения.	жесткости воды		
21	15	Минеральные воды, их использование в	л. р.	Приборы на	записи,
		столовых и лечебных целях. Жидкие	Ознакомление с	жидких	§ 9
		кристаллы и их применение.	минеральными	кристаллах	
			водами		
22	16	Твердое состояние вещества. Аморфные	д. Аморфное		записи

			твердые вещества в природе и в жизни	CaCO ₃ – мел, NaCl		
			человека, их значение и применение.	– пов. соль –		
			Кристаллическое строение вещества.	кристаллическое		
	23	17	Дисперсные системы. Понятие о	л. р.	Образцы	§ 8
			дисперсных системах. Дисперсная фаза и	Ознакомление с	эмульсий,	(§11), ctp.
ļ			дисперсионная среда.	дисперсными	суспензий,	65-66
				системами	аэрозолей, гелей,	
					золей	
	24	18	Классификация дисперсных систем в			стр. 66-
ļ			зависимости от агрегатного состояния			67 (§ 11)
			дисперсной фазы и дисперсионной среды.			
e e	25	19	Грубодисперсные системы: эмульсии,			стр. 67-
			суспензии, аэрозоли (взвеси).			68 (§ 11)
	26	20	Тонкодисперсные системы: гели и золи	д. Коагуляция,		стр. 69-
			(коллоидные растворы), истинные растворы.	синерезис, эффект		70, 70-71
				Тендаля		(§ 11)
	27	21	Состав вещества и смесей. Вещества			стр. 70-
			молекулярного и немолекулярного			71, § 12
			строения. Законы постоянства состава.			(стр. 105)
	28	22	Понятие «доля» и ее разновидности:	Решение задач		§ 12,
			массовая доля элементов в соединении, доля	на массовую долю;		стр. 106-
ļ			компонента в смеси.	на смеси		107
	29	23	Массовая доля примесей, доля	Решение задач		§ 12,
			растворенного вещества в растворе и	на примеси, на		стр. 107-
			объемная доля.	долю вещества в		108
				растворе и		
:				объемную долю		
	30	24	Доля выхода продукта от теоретически	Задачи на выход		§ 12,

	возможного.	продукта	стр. 109- 110
31 25	Контрольная работа № 1 по темам 1 и 2.		
32 26	Анализ работы.		
	Зачет№3		
	Повторительно-обобщающие уроки (2 часа)		
33 1	Повторительно-обобщающий урок по теме		
34 2	Повторительно-обобщающий урок по теме		
35	Резерв		
36	Резерв		

Календарно- тематическое планирование по химии 12 класс по 3-х годичной программе 1 час в неделю 36 часов в год

2016-2017 учебный год

Программа: Автор Габриелян О.С., Программа курса химии для 10-11 классов общеобразовательных учреждений.

Базовый уровень. Москва, Дрофа, 2011 год

Учебник О.С. Габриелян. Химия.11 класс. Базовый уровень. Москва, Дрофа, 2011г.

No	№	Дата	Тема урока	Практическая	Оборудование	Домашнее
п/п	В	проведени		часть		задание
	теме					
	Тема 3. Химические реакции (16 часов)					
1	1		Реакции, идущие без изменения состава	Вводный		§13,
			веществ. Аллотропия и аллотропные	инструктаж.		стр. 112-
-			видоизменения. Причины аллотропии на	д.озонатор		115
			примере модификаций кислорода, углерода и	Превращение		
	i 		фосфора. Озон, его биологическая роль.	красного фосфора в		
Ĺ				белый.		
2	2		Изомеры, изомерия, виды изомерии.		д. модели молекул	§13,
					н. – бутана,	стр.116-117
					изобутана	
3	3	ı	Реакции, идущие с изменением состава	д.примеры		§ 14,
			вещества. Реакции соединения, разложения,	необратимых		стр. 118-
			замещения, обмена в неорганической и	реакций с		122
			органической химии.	образованием		
				осадка, газа и воды		
4	4		Реакции экзо- и эндотермические. Тепловой	Задачи на тепловой		§ 14,
			эффект. Химические реакции и	эффект.		стр. 123-
			термохимические уравнения. Реакция			125

		горения, как частный случай экзотермических реакций.			
5	5	Скорость химических реакций. Зависимость скорости химической реакции от природы реагирующих веществ, концентрации, температуры, поверхности соприкосновения и катализатора.			§ 15, стр. 126- 132
6	6	Понятие о катализе и катализаторах. Ферменты как биологические катализаторы, особенности их функционирования.			§15, стр. 133- 135
7	7	Обратимость химических реакций . Необратимые и обратимые химические реакции. Состояние химического равновесия для обратимых химических реакций. Способы смещения химического равновесия на примере синтеза аммиака.			§16, стр. 137- 139
8	8	Понятие об основных научных принципах производства на примере синтеза аммиака или серной кислоты.		Таблицы производства	§ 16, стр. 140- 142
9	9	Роль воды в химической реакции. Истинные растворы. Растворимость. Классификация веществ по этому признаку: растворимые, малорастворимые и перастворимые вещества.	д. образцы кристаллогидратов.	Таблицы растворимости	§17, ctp. 143- 145
10	10	Электролиты и неэлектролиты. Электролитическая диссоциация. Кислоты, основания и соли с точки зрения теории электролитической диссоциации.	д. Испытание равенств электролитов и неэлектролитов на диссоциацию.		§17, crp. 145- 147

Календарно- тематическое планирование по химии 12 класс по 3-х годичной программе

1 час в неделю 36 часов в год 2016-2017 учебный год

Программа: Автор Габриелян О.С., Программа курса химии для 10-11 классов общеобразовательных учреждений.

Базовый уровень. Москва, Дрофа, 2011 год

Учебник О.С. Габриелян. Химия.11 класс. Базовый уровень. Москва, Дрофа, 2011г.

No	№	Дата	Тема урока	Практическая	Оборудование	Домашнее
п/п	В	проведени		часть		задание
	теме					
			Тема 3. Химические реакци	ии (16 часов)		
1.	1		Реакции, идущие без изменения состава	Вводный	·	§13,
			веществ. Аллотропия и аллотропные	инструктаж.		стр. 112-
			видоизменения. Причины аллотропии на	д.озонатор		115
			примере модификаций кислорода, углерода и	Превращение		
			фосфора. Озон, его биологическая роль.	красного фосфора в		
				белый.		
2	2		Изомеры, изомерия, виды изомерии.		д. модели молекул	§13,
:					н. – бутана,	стр.116-117
					изобутана	
3	3		Реакции, идущие с изменением состава	д.примеры		§ 14,
			вещества. Реакции соединения, разложения,	необратимых		стр. 118-
			замещения, обмена в неорганической и	реакций с		122
			органической химии.	образованием		
				осадка, газа и воды		
4	4		Реакции экзо- и эндотермические. Тепловой	Задачи на тепловой		§ 14,
			эффект. Химические реакции и	эффект.		стр. 123-
			термохимические уравнения. Реакция			125

11	11	Химические свойства воды:	§ 17,
		взаимодействия с металлами, основными и	стр. 147-
		кислотными оксидами, разложение,	149
		образование кристаллогидратов. Реакции	
		гидратации в органической химии.	
12	12	Гидролиз органических и неорганических	§ 18,
		соединений. Необратимый гидролиз.	стр. 150-
		Обратимый гидролиз солей.	152
13	13	Гидролиз органических соединений и его	§ 18,
		практическое значение для получения	стр. 153-
		гидролизного спирта и мыла. Биологическая	154
		роль гидролиза в пластическом и	
		энергетическом обмене веществ и энергии в	
		клетке.	
14	14	Окислительно-восстановительные	§ 19,
		реакции. Степень окисления. Определение	стр. 155-
		степени окисления по формуле соединения.	158
		Понятие об окислительно-	
		восстановительных реакциях. Окисление и	
		восстановление, окислитель и	
		восстановитель.	
15	15	Электролиз. Электролиз как	Модель §19,
		окислительно-восстановительный процесс.	электролизера стр. 158-
		Электролиз расплавов и растворов на	159
- <u>-</u>		примере хлорида натрия.	
16	16	Практическое применение электролиза.	Таблицы §19,
		Электролитическое получение алюминия.	стр. 160-
		Контрольная работа№1	
		Зачет№1	

: 1

		Тема 4. Вещества и их свойства (18 часов)			
17	1	Металлы. Взаимодействие металлов с		Коллекция	§ 20,
		неметаллами (хлором, серой, кислородом).	1	образцов	стр. 164-
		Взаимодействие щелочных и щелочно-		металлов	167
		земельных металлов с водой.			
18	2	Электрохимический ряд напряжений			§ 20,
		металлов. Взаимодействие металлов с			стр. 167-
		растворами кислот и солей. Алюмотермия.			169
		Взаимодействие натрия с этанолом и			
		фенолом.			
19	3	Коррозия металлов. Понятие о			§ 20,
		химической и электрохимической коррозии			стр. 170-
		металлов. Способы защиты металлов от			173
		коррозии.			
20	4	Неметаллы. Сравнительная		Коллекция	§ 21,
		характеристика галогенов как наиболее		образцов	стр. 174-
		типичных представителей неметаллов.		неметаллов	176
21	5	Окислительные свойства неметаллов			§ 21,
		(взаимодействие с металлами и водородом).			стр. 176-
					177
22	6	Восстановительные свойства неметаллов			§ 21,
		(взаимодействие с более			стр. 177-
<u> </u>		электроотрицательными неметаллами и			179
		сложными веществами-окислителями).			
23	7	Кислоты неорганические и органические.	л.р. Испытание	Таблица 17	§ 22,
		Классификация кислот.	равенств кислот		стр. 180-
			индикаторами.		182
24	8	Химические свойства кислот:		Коллекция	§ 22,

11	11	Химические свойства воды: взаимодействия с металлами, основными и		§17, ctp. 147-
		кислотными оксидами, разложение, образование кристаллогидратов. Реакции гидратации в органической химии.		149
12	12	Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей.		§ 18, стр. 150- 152
13	13	Гидролиз органических соединений и его практическое значение для получения гидролизного спирта и мыла. Биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.		§18, стр. 153- 154
14	14	Окислительно-восстановительные реакции. Степень окисления. Определение степени окисления по формуле соединения. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.		§ 19, стр. 155- 158
15	15	Электролиз. Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия.	Модель электролизера	§ 19, стр. 158- 159
16	16	Практическое применение электролиза. Электролитическое получение алюминия. Контрольная работа№1 Зачет№1	Таблицы	§ 19, стр. 160- 162

.

		взаимодействие с металлами, оксидами металлов, гидроксидами, солями, спиртами (реакция этерификации).		природных органических кислот	стр. 183
25	9	Особые свойства азотной и концентрированной серной кислоты. Зачет№2			§ 22
26	10	Основания неорганические и органические. Основания, их классификация.		Таблица 19	§ 23
27	11	Химические свойства оснований: взаимодействие с кислотами, кислотными оксидами, солями. Разложение нерастворимых оснований.	I .		§ 23
28	12	Соли. Классификация солей: средние, кислые и основные. Химические свойства солей: с кислотами, щелочами, металлами, солями.		д. образцы природных минералов	§ 24
29	13	Представители солей, и их значение. Хлорид натрия, карбонат кальция, фосфат кальция (средние), гидрокарбонаты натрия и аммония (кислые соли), гидрокарбонат меди (II) – малахит (основная соль).	уксусом, гидролиз хлоридов, ацетатов		§ 24
30	14	Качественные реакции на хлорид -, сульфат -, карбонат – ионы, катион аммония, катионы железа (II) и (III).			§ 24
31	15	Генетическая связь между классами неорганических и органических соединений. Понятие о генетической связи и генетических рядах. Генетический ряд		·	§ 25

		металла. Особенности генетического ряда в органической химии.
32	16	Практическая работа № 2 «Решение экспериментальных задач на индефикацию органических и неорганических соединений».
33	17	Контрольная работа № 2
34	18	Анализ работы.
		Зачет№3
35		Резерв
36		Резерв